25th Anniversary Edition

International Conference on Control Systems and Computer Science

Artificial Intelligence Support for Dynamic Digital Twins

Dimitris Karagiannis Universität Wien <u>dk@dke.univie.ac.at</u>

dk@dke.univie.ac.at

May 29, 2025, Bucharest, Romania

Source: Call for Papers 23rd to 25th CSCS Conference from 2021 – 2025 (no CfP available for previous editions)

2

A Nonprofit Organization

3

www.omilab.org A Nonprofit Organization

(no CfP available for previous editions)

Contents

- 1. Dynamic Digital Twins
- 2. Conceptual Modeling & Artificial Intelligence
- 3. Case Studies
- 4. OMiLAB

1. Dynamic Digital Twins

For what purpose do we use Digital Twins?

Ceci n'est pas une pipe.

magnitte

Source: <u>https://www.planet-schule.de/mm/nie-wieder-keine-ahnung/malerei/epochen/surrealismus</u> (Original from RENÉ MAGRITTE, DER VERRAT DER BILDER, 1928-29)

Digital Representations: The Purpose

Operational Environment

Digital Representation

The Purpose: Observation

Digital Twin of Physical Objects

Example: Observing a jet engine (real-time or prototyping)^[1]

[1] Banerjee et al. (2024) Digital Twin: A Quick Overview

The Purpose: Design & Operationalization

Digital Twin of Haptic Design Thinking

<u>Example</u>: Designing Innovation Solutions through Design Thinking

[2] Muck (2024) A Dynamic Adaptation Framework for Haptic Modelling Methods: Creating Digital Twins from Design Thinking.

The Purpose: Design & Operationalization

Digital Twin of Cyber-Physical Environments

<u>Example</u>: Engineering Cyber-Physical IoT Environments

Purpose: Digital Twin for Operationalization

[3] Schnellmann & Proper (2025) The HESTIA Framework From an Internet of Things to an Internet of Meaning. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) *Domain-Specific Conceptual Modelling: Volume 3: The OMiLAB Community of Practice. Springer, Cham*)

Digital Twin: A Notion of a Digital Representation

A Digital Twin is a **digital representation** of a system that mirrors its state and behavior through continuous data flow, focusing on monitoring, simulation, and optimization of predefined components.

A Dynamic Digital Twin is an **adaptive digital representation** of a system capable of reflecting structural and contextual changes to enable intelligent adaptations and operations beyond mere data updates.

2. Conceptual Modeling & Artificial Intelligence

Two ingredients in today's presentation

Experiment Setting

OMiLAB Robot Arm: https://univie.community.omilab.org/experiment/omilab-robotic-arm-1/

Experiment Setting

Flexible Image Recognition

```
Input : Scene S, Knowledge Base KB
Output : A graph
Function OneShotSceneRecognition(S,KB)
G \leftarrow \emptyset
E \leftarrow ElementLocalisation(S)
for each element e \in E do
          (label, KBDescription(e), isKnown) \leftarrow Compare(e, KB)
           if isKnown then
                   G \leftarrow AddNode(e, label, KBDescription(e))
           else
                 Description(e) \leftarrow Describe(e)
                 (label, KBDescription(e), isKnown) \leftarrow Compare(Description(e), KB)
                 Description(e) \leftarrow KBDescription(e) \cup Description(e)
                 if isKnown then
                          G \leftarrow AddNode(e, label, Description(e))
                 else
                          G \leftarrow AddNode(e, USO, Description(e))
                 end if
          end if
end for
return G
End function
```


[4] Averty & Kotzinos (2025) Enhancing the S2M Tool - A ResNet50Encoder-Based Add-On for Flexible Object Recognition in Design Thinking. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) *Domain-Specific Conceptual Modelling: Volume 3: The OMiLAB Community of Practice. Springer, Cham*)

Artificial Intelligence: An Abstract View

Some Platforms

Foundations

Classification: SVM, Decision Tree, NN, ...

> Prediction: RNN, LSTM, GNN, ...

Recognition CNN, Computer Vision, ...

Generation GAN, VAE, Transformer Model, ...

SVM: Support Vector Machine NN: Neural Network RNN: Recurrent Neural Network LSTM: Long Short-Term Memory Network GNN: Graph Neural Network CNN: Convolutional Neural Network GAN: Generative Adversarial Network VAE: Variational Autoencoder

Artificial Intelligence: An Abstract View

Some Functions

Our Cases

Design Environment

Cyber-Physical Environment

Some Platforms

21

Conceptual Modeling: The Metamodeling Approach

[5] Voelz & Strauss (2025) IA4CM: An Intelligence Augmentation Approach for Designing Domain-Specific Conceptual Modeling Methods. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) *Domain-Specific Conceptual Modelling: Volume 3: The OMILAB Community of Practice. Springer, Cham*)

Source of Knowledge within Artificial Intelligence

A Nonprofit Organization

3. Case Studies

Artificial Intelligence Support

Our Cases

Cyber-Physical Environment

Some Platforms

Digital Twin of Haptic Design Thinking

- Physical **Design Thinking** Environment
- → **Result**: haptic design artefact and common understanding by participants

- Digital Diagrammatic
 Conceptual Modelling
- \rightarrow **Result**: processable representation of the idea

Goal: Capture results from physical design thinking workshops by automatically creating digital twins

Digital Twins for Design The Scene2Model Example

Scene2Model ^[3,4]

Design Artefact

- modelling environment, consisting of an ADOxx-based modelling tool in its core and facilitating components
- enables the transformation of haptic Design Thinking scenes into digital models that can be further adapted, processed, and shared

Recognition Mapping

figure recognition

[2] Muck (2024) A Dynamic Adaptation Framework for Haptic Modelling Methods: Creating Digital Twins from Design Thinking. [6] Miron et al. (2019) Transforming haptic storyboards into diagrammatic models: The scene2model tool. [7] Voelz et al. (2024) Digital Twins for Haptic Design Thinking: An Innovative Prototype.

Context Information

Por -

environments

Artificial Intelligence Support

Our Cases

Design Environment

Some Platforms

Digital Twin of Cyber-physical Systems

 Dynamic Cyber-physical **Environments**

 \rightarrow **Result**: components are constantly changing

 Digital Twin of Cyber-**Physical Systems**

 \rightarrow **Result**: accurately represent the live state of the physical counterpart

Goal: Create a Digital Twin that is as dynamic as the Environment it represents

Digital Twin

Digital Twins for Operationalisation The IoT2Model Example

Transformation of physical IoT environments into dynamic Digital Twins.

AI Functions:

Digital Twin: OpenHAB

[8] Amlashi et al. (2024) Artificial Intelligence and Internet of Things: A Neuro-Symbolic Approach for Automated Platform Configuration.

4. OMiLAB: Digital Innovation Environment

OMiLAB: Research Lab

[9] Karagiannis et al. (2020) OMiLAB: A Smart Innovation Environment for Digital Engineers

OMiLAB: A Community of Practice We are global ... 27 OMiLAB Nodes COMLAB Www.omilab.org **HHN** HS'BI UBBFSEGA & OMLAB OMLAB www.omilab.org OMLAB OMLAR 12 Countries 2 Continents Contents Contents Contents www.omilab.org ZDBB OMLAB UNIVERSITY OF OULU OMLAD www.omilab.org OMLA B www.omilab.org MCOMLAB **POMLAR** OMLA OMLA www.omilab OMLAB www.omilab.org OMLAR www.omilab.org n w Renorated Hadesenad JCANNELM OMLASS INVW.omilab.org DESLI STUD OMLA www.omilab.org OMLAB www.omilab.org DECOMLAB OMLAR OMLAB

Concluding Remarks

Challenge:

How can we make human-interpretable objects interact with machine-interpretable objects?

Our Metamodeling Approach:

A shared metamodel enables the interaction between meaning created in our minds and machine-interpretable representations of this meaning.

34

Thank you!

There is nothing permanent except change.

Heraclitus

Access today's material

https://www.omilab.org/activities/events/cscs2025_keynote/

References

- [1] Banerjee, B., Chakravarthy, K., Fisher, W., Riley, R., Sabile, E., Sabino, H., Scully, T., Silvas, J., Sinclair, A. E., Soberanis, P., Upadhyay, H., Wells, D., Werner, J. (2024) Digital Twin: A Quick Overview. **The ITEA Journal of Test and Evaluation** 45(1).
- [2] Muck, C. (2024) A Dynamic Adaptation Framework for Haptic Modelling Methods: Creating Digital Twins from Design Thinking. University of Vienna.
- [3] Schnellmann, M., Proper, H. A. (2025) The HESTIA Framework From an Internet of Things to an Internet of Meaning. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) Domain-Specific Conceptual Modelling: Volume 3: The OMiLAB Community of Practice. Springer, Cham)
- [4] Averty, P., Kotzinos, D. (2025) Enhancing the S2M Tool A ResNet50Encoder-Based Add-On for Flexible Object Recognition in Design Thinking. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) Domain-Specific Conceptual Modelling: Volume 3: The OMiLAB Community of Practice. Springer, Cham)
- [5] Voelz, A., Strauss, C. (2025) IA4CM: An Intelligence Augmentation Approach for Designing Domain-Specific Conceptual Modeling Methods. (to be published In: Boucher, X., Buchmann, R. A., Fill, H.-G., Kiritsis, D. & Utz, W. (eds.) Domain-Specific Conceptual Modelling: Volume 3: The OMiLAB Community of Practice. Springer, Cham)
- [6] Miron, E.-T., Muck, C., Karagiannis, D. (2019) Transforming haptic storyboards into diagrammatic models: The scene2model tool. In: Proceedings of the 52nd Hawaii International Conference on System Sciences, pp. 541–550.
- [7] Völz, A., Muck, C., Utz, W. (2024) Digital Twins for Haptic Design Thinking: An Innovative Prototype. In: **19. Internationale Tagung Wirtschaftsinformatik**, Wirtschaftsinformatik 2024 Proceedings.
- [8] Amlashi, D. M., Voelz, A., Karagiannis, D. (2024) Artificial Intelligence and Internet of Things: A Neuro-Symbolic Approach for Automated Platform Configuration. Neurosymbolic Artificial Intelligence, Special Issue on Neuro-Symbolic AI and Domain Specific Conceptual Modelling.
- [9] Karagiannis, D., Buchmann, R. A., Boucher, X., Cavalieri, S., Florea, A., Kiritsis, D., Lee, M. (2020) OMiLAB: A Smart Innovation Environment for Digital Engineers In: L. M. Camarinha-Matos, H. Afsarmanesh, A. Ortiz (Eds.), Boosting Collaborative Networks 4.0, Springer International Publishing, Cham, 2020, pp. 273–282.

